
BALI: Enhancing Biomedical Language Representations through Knowledge Graph and Language Model Alignment
arXiv:2509.07588v1 Announce Type: cross
Abstract: In recent years, there has been substantial progress in using pretrained Language Models (LMs) on a range of tasks aimed at improving the understanding of biomedical texts. Nonetheless, existing biomedical LLMs show limited comprehension of complex, domain-specific concept structures and the factual information encoded in biomedical Knowledge Graphs (KGs). In this work, we propose BALI (Biomedical Knowledge Graph and Language Model Alignment), a novel joint LM and KG pre-training method that augments an LM with external knowledge by the simultaneous learning of a dedicated KG encoder and aligning the representations of both the LM and the graph. For a given textual sequence, we link biomedical concept mentions to the Unified Medical Language System (UMLS) KG and utilize local KG subgraphs as cross-modal positive samples for these mentions. Our empirical findings indicate that implementing our method on several leading biomedical LMs, such as PubMedBERT and BioLinkBERT, improves their performance on a range of language understanding tasks and the quality of entity representations, even with minimal pre-training on a small alignment dataset sourced from PubMed scientific abstracts.
Source link