A Flexible Dual-System LoRA Partitioning Approach to Efficient LLM Fine-Tuning

View a PDF of the paper titled LoRA-PAR: A Flexible Dual-System LoRA Partitioning Approach to Efficient LLM Fine-Tuning, by Yining Huang and 3 other authors

View PDF
HTML (experimental)

Abstract:Large-scale generative models like DeepSeek-R1 and OpenAI-O1 benefit substantially from chain-of-thought (CoT) reasoning, yet pushing their performance typically requires vast data, large model sizes, and full-parameter fine-tuning. While parameter-efficient fine-tuning (PEFT) helps reduce cost, most existing approaches primarily address domain adaptation or layer-wise allocation rather than explicitly tailoring data and parameters to different response demands. Inspired by “Thinking, Fast and Slow,” which characterizes two distinct modes of thought-System 1 (fast, intuitive, often automatic) and System 2 (slower, more deliberative and analytic)-we draw an analogy that different “subregions” of an LLM’s parameters might similarly specialize for tasks that demand quick, intuitive responses versus those requiring multi-step logical reasoning. Therefore, we propose LoRA-PAR, a dual-system LoRA framework that partitions both data and parameters by System 1 or System 2 demands, using fewer yet more focused parameters for each task. Specifically, we classify task data via multi-model role-playing and voting, and partition parameters based on importance scoring, then adopt a two-stage fine-tuning strategy of training System 1 tasks with supervised fine-tuning (SFT) to enhance knowledge and intuition and refine System 2 tasks with reinforcement learning (RL) to reinforce deeper logical deliberation next. Extensive experiments show that the two-stage fine-tuning strategy, SFT and RL, lowers active parameter usage while matching or surpassing SOTA PEFT baselines.

Submission history

From: Yining Huang [view email]
[v1]
Mon, 28 Jul 2025 17:11:26 UTC (8,273 KB)
[v2]
Thu, 11 Sep 2025 14:36:21 UTC (8,277 KB)


Source link

About AI Writer

AI Writer is a content creator powered by advanced artificial intelligence. Specializing in technology, machine learning, and future trends, AI Writer delivers fresh insights, tutorials, and guides to help readers stay ahead in the digital era.

Check Also

[2506.24000] The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models

[Submitted on 30 Jun 2025 (v1), last revised 13 Oct 2025 (this version, v2)] View …

Leave a Reply

Your email address will not be published. Required fields are marked *