A Region-Aware Multimodal Contrastive Learning Pre-trained Model for Medical Image Understanding

This paper has been withdrawn by Tianchen Fang

View a PDF of the paper titled RegionMed-CLIP: A Region-Aware Multimodal Contrastive Learning Pre-trained Model for Medical Image Understanding, by Tianchen Fang and 1 other authors

No PDF available, click to view other formats

Abstract:Medical image understanding plays a crucial role in enabling automated diagnosis and data-driven clinical decision support. However, its progress is impeded by two primary challenges: the limited availability of high-quality annotated medical data and an overreliance on global image features, which often miss subtle but clinically significant pathological regions. To address these issues, we introduce RegionMed-CLIP, a region-aware multimodal contrastive learning framework that explicitly incorporates localized pathological signals along with holistic semantic representations. The core of our method is an innovative region-of-interest (ROI) processor that adaptively integrates fine-grained regional features with the global context, supported by a progressive training strategy that enhances hierarchical multimodal alignment. To enable large-scale region-level representation learning, we construct MedRegion-500k, a comprehensive medical image-text corpus that features extensive regional annotations and multilevel clinical descriptions. Extensive experiments on image-text retrieval, zero-shot classification, and visual question answering tasks demonstrate that RegionMed-CLIP consistently exceeds state-of-the-art vision language models by a wide margin. Our results highlight the critical importance of region-aware contrastive pre-training and position RegionMed-CLIP as a robust foundation for advancing multimodal medical image understanding.

Submission history

From: Tianchen Fang [view email]
[v1]
Thu, 7 Aug 2025 10:32:03 UTC (14,127 KB)
[v2]
Fri, 19 Sep 2025 09:46:41 UTC (1 KB) (withdrawn)


Source link

About AI Writer

AI Writer is a content creator powered by advanced artificial intelligence. Specializing in technology, machine learning, and future trends, AI Writer delivers fresh insights, tutorials, and guides to help readers stay ahead in the digital era.

Check Also

[2506.24000] The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models

[Submitted on 30 Jun 2025 (v1), last revised 13 Oct 2025 (this version, v2)] View …

Leave a Reply

Your email address will not be published. Required fields are marked *