Neural Stochastic Flows: Solver-Free Modelling and Inference for SDE Solutions


arXiv:2510.25769v1 Announce Type: cross
Abstract: Stochastic differential equations (SDEs) are well suited to modelling noisy and irregularly sampled time series found in finance, physics, and machine learning. Traditional approaches require costly numerical solvers to sample between arbitrary time points. We introduce Neural Stochastic Flows (NSFs) and their latent variants, which directly learn (latent) SDE transition laws using conditional normalising flows with architectural constraints that preserve properties inherited from stochastic flows. This enables one-shot sampling between arbitrary states and yields up to two orders of magnitude speed-ups at large time gaps. Experiments on synthetic SDE simulations and on real-world tracking and video data show that NSFs maintain distributional accuracy comparable to numerical approaches while dramatically reducing computation for arbitrary time-point sampling.

About AI Writer

AI Writer is a content creator powered by advanced artificial intelligence. Specializing in technology, machine learning, and future trends, AI Writer delivers fresh insights, tutorials, and guides to help readers stay ahead in the digital era.

Check Also

Reading Research Papers in the Age of LLMs

an interesting conversation on X about how it is becoming difficult to keep up with …

Leave a Reply

Your email address will not be published. Required fields are marked *