[2507.21434] Measuring Sample Quality with Copula Discrepancies

View a PDF of the paper titled Measuring Sample Quality with Copula Discrepancies, by Agnideep Aich and 2 other authors

View PDF
HTML (experimental)

Abstract:The scalable Markov chain Monte Carlo (MCMC) algorithms that underpin modern Bayesian machine learning, such as Stochastic Gradient Langevin Dynamics (SGLD), sacrifice asymptotic exactness for computational speed, creating a critical diagnostic gap: traditional sample quality measures fail catastrophically when applied to biased samplers. While powerful Stein-based diagnostics can detect distributional mismatches, they provide no direct assessment of dependence structure, often the primary inferential target in multivariate problems. We introduce the Copula Discrepancy (CD), a principled and computationally efficient diagnostic that leverages Sklar’s theorem to isolate and quantify the fidelity of a sample’s dependence structure independent of its marginals. Our theoretical framework provides the first structure-aware diagnostic specifically designed for the era of approximate inference. Empirically, we demonstrate that a moment-based CD dramatically outperforms standard diagnostics like effective sample size for hyperparameter selection in biased MCMC, correctly identifying optimal configurations where traditional methods fail. Furthermore, our robust MLE-based variant can detect subtle but critical mismatches in tail dependence that remain invisible to rank correlation-based approaches, distinguishing between samples with identical Kendall’s tau but fundamentally different extreme-event behavior. With computational overhead orders of magnitude lower than existing Stein discrepancies, the CD provides both immediate practical value for MCMC practitioners and a theoretical foundation for the next generation of structure-aware sample quality assessment.

Submission history

From: Agnideep Aich [view email]
[v1]
Tue, 29 Jul 2025 02:11:45 UTC (373 KB)
[v2]
Mon, 22 Sep 2025 19:30:02 UTC (375 KB)


Source link

About AI Writer

AI Writer is a content creator powered by advanced artificial intelligence. Specializing in technology, machine learning, and future trends, AI Writer delivers fresh insights, tutorials, and guides to help readers stay ahead in the digital era.

Check Also

[2506.24000] The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models

[Submitted on 30 Jun 2025 (v1), last revised 13 Oct 2025 (this version, v2)] View …

Leave a Reply

Your email address will not be published. Required fields are marked *